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TECHNICAL MEMORANDUM X- 5 37 87 

DEVELOPMENT OF THE MATERIALS DIVISION METEOROID SIMULATION FACILITY 

I. SUMNARY 

An introduction t o  the meteoroid hazard i s  presented. The various 
methods used t o  simuZate meteoroid impact are discussed and compared 
with the capab i l i t i e s  of the Materials Division Meteoroid Simulation 
Fac i l i ty .  A descr ipt ion of the Meteoroid Simulation Fac i l i t y  is  pre- 
sented, This descr ipt ion includes the basic l i g h t  gas gun, the sabot 
s t r ipper ,  the accessory th i rd  s tage accelerators ,  the range tank, and 
the instrumentation. The r e s u l t s  of the f i r i n g s  during the proof and 
development phase of operation are summarized and discussed. 
gram capab i l i t i e s  of the Meteoroid Simulation Fac i l i t y  are' presented. 
Simulation of meteoroid impact on spec i f ic  spacecraft  hardware i s  now 
i n  progress, 

The pro- 

11. INTRODUCTION 

Spacecraft designers mus t  an t ic ipa te  many space environmental 
fac tors  which can a f f ec t  the success and usefulness of any given mission. 
Two of the important fac tors  affect ing the operating conditions and the 
survival  probabi l i ty  of a spacecraft  a re  the meteoroid f lux  and the 
so l a r  f l ux  of both charged pa r t i c l e s  and electromagnetic radiat ion.  
The e f f ec t s  of the so l a r  f l u x  on the spacecraft  are rout inely con- 
t ro l l ed  by thermal control  coatings and normally are not dependent on 
the spacecraft  s i z e  o r  the length of the mission. The e f f ec t s  of the 
charged p a r t i c l e  rad ia t ion  are s t r i c t l y  cumulative, so the rad ia t ion  
protect ion measures need t o  be increased f o r  longer missions; but the 
rad ia t ion  e f f e c t s  normally are independent of spacecraft  s ize .  
trast, the meteoroid environment i s  much more severe due t o  the f a c t  
t ha t  penetration of a spacecraft  by even one meteoroid could be cat- 
astrophic. 
increased fo r  e i t h e r  longer missions o r  larger  spacecraft  due t o  t h e i r  
increased probabi l i ty  of in te rac t ion  with meteoroids. 

I n  con- 

For t h i s  reason the meteoroid protect ion measures must be 

To design a spacecraft  t o  a ce r t a in  safe ty  factor ,  a designer must 
The meteoroid environment 

It i s  generally believed tha t  the mass and ve loc i ty  

have knowledge of the meteoroid environment. 
is  described by the meteoroid ve loc i ty  d i s t r ibu t ion  and the meteoroid 
mass dis t r ibu t ion .  
d i s t r ibu t ions  are f u l l y  independent. 
being studied has pa r t i c l e s  with the same ve loc i ty  spectrum as a l l  

This implies t ha t  any mass range 



other mass ranges. 

The ve loc i ty  d i s t r ibu t ion  as gathered from photographic meteor 
trail data  [I] i s  shown i n  Figure, 1. 
extends from 11 km/sec (36,100 f t l s e c )  t o  approximately 70 km/sec 
(230,000 f t / s ec ) ,  
t o  the ve loc i ty  increment gained by f a l l i n g  in to  the ea r th  grav i ta t iona l  
f i e ld .  
l a t i v e  ve loc i t i e s  lower than t h i s  value. 
km/sec (214,000 f t / s ec )  is  s t i l l  i n  dispute. , b y  invest igators  
a t t r i b u t e  t h i s  peak t o  instrumental bias  and, therefore, t r y  t o  eliminate 
i t  i n  theore t ica l  calculat ions.  
ve loc i ty  d is t r ibu t ion ,  i t  i s  of ten su f f i c i en t  to  simplify calculat ions 
by u t i l i z i n g  an average velocity.  The average meteoroid veloci ty  
recommended f o r  spacecraft  design cr i ter ia  i s  26.7 km/sec (87,600 
ft/sec) kl. 

It can be seen tha t  the ve loc i ty  

The sharp cut-off a t  approximately 11 km/sec is  due 

Meteoroids encountered i n  interplanetary space could have re- 
The smaller peak near 65 

Since a l l  mass ranges have t h i s  same 

When these extremely high meteoroid ve loc i t i e s  are associated with 
an impact the term hypervelocity i s  of ten used. 
property of materials and is  defined as a speed f a s t e r  than the speed 
of sound i n  the mater ia l ,  For many materials hypervelocity begins a t  
about 5 km/sec (16,400 f t / s ec )  . Above t h i s  ve loc i ty  sound waves can no 
longer d iss ipa te  the energy of impact and shock waves are set up i n  the 
materials. 
to  l iquefy and vaporize the material which then blows out and disperses 
leaving a crater. 

Hypervelocity i s  a 

The pressures behind the shock waves are su f f i c i en t ly  high 

The m a s s  f l ux  d i s t r ibu t ion  as compiled i n  Reference 1 i s  shown 
i n  Figure 2.  
graphic meteor trails while the small mass end of the cume i s  defined 
by data  from the Pegasus spacecrafts and microphone detectors attached 
t o  various other spacecraft ,  

The large m a s s  end of the curve comes from data on photo- 

The mass f lux  d i s t r ibu t ion  can be used t o  pred ic t  the l a rges t  
meteoroid which can be expected f o r  a given probabi l i ty  of mission 
success. This is  done by dividing the maximum acceptable penetration 
probabi l i ty  by the product of the spacecraft  area, the mission length, 
and any applicable geometrical factors .  
threshold f lux  value and the mass f lux  d is t r ibu t ion  defines the l a rges t  
meteoroid which can be expected t o  impact the spacecraft  during i t s  
mission l i fe .  The spacecraft  mus t  then be designed t o  withstand impact 
by a meteoroid of t h i s  mass, 

The in te rsec t ion  of t h i s  

A large number of experimental s tudies  of s ing le  sheet impact by 
hypervelocity p ro jec t i l e s  have pr.oduced a f a i r l y  complete set  of em- 
p i r i c a l  formulas f o r  predict ing penetration of d i f f e ren t  materials by 
p ro jec t i l e s  of varying density 131. Unfortunately, these formulas show 
tha t  the la rger  meteoroids which can be s t a t i s t i c a l l y  expected on 
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extended missions require prohibit ively thick walls f o r  the required 
protection. 

A weight saving has been found i n  the concept af a meteoroid 
bumper. 
composition separated from the spacecraft s t r u c t u r a l  w a l l  by varying 
spaces of materials and/or vacuum. 
bumper design depends on several  factors .  
which the bumper can break up the meteoroid. 
i ze  the meteoroid as much as possible. A second factor  i s  the bumper 
stand-off distance. 
distance as possible to  allow the vapor and l iquid droplet  cloud pro- 
duced by the meteoroid to  spread out over as large an area as possible. 
A th i rd  factor  i s  any layered s t ruc ture  such as  thermal insulat ion 
which i s  attached t o  the spacecraft w a l l .  
matches, the layered s t ruc ture  can attenuate the shock wave due to  the 
impact of the vapor and l iquid droplet  cloud and, thereby, make the 
bumper more effect ive.  The very large number of variables i n  bumper 
configurations make it  doubtful i f  a general bumper theory can be - 
developed, A t  l e a s t  for  the present, each new bumper and insulat ion 
configuration w i l l  require tes t ing  t o  determine i t s  effectiveness i n  
protecting a spacecraft from meteoroids. To provide the experimental 
support required f o r  design ac t iv i ty  the Materials Division developed 
the Meteoroid Simulation Fac i l i ty .  

A meteoroid bumper i s  an exter ior  s h e l l  of some thickness and 

The effectiveness of any given 
One factor  is the degree to  

It is  desirable t o  vapor- 

It i s  desirable  t o  have as  large a stand-off 

Because of impedance m i s -  

This need f o r  meteoroid simulation t o  determine the penetration 
probabili ty of various spacecraft designs has been recognized f o r  many 
years. 
p ro j ec t i l e s  to  hypervelocities. 
hypervelocity launchers which are  o r  could be adapted to  meteoroid 
simulation. 
and p ro jec t i l e  description. 

Several approaches have been taken t o  the problem of accelerating 
In  Table I are  shown s ix  types of ' 

Also, given i n  the table  are  the respective velocity l i m i t  

As shown earlier, the idea l  velocity range for  meteoroid simulation 
would be from 11 km/sec t o  25 km/sec. 
shaped charge j e t s ,  e l ec t ros t a t i c  accelerators,  and drag accelerators 
can reach well i n to  t h i s  veloci ty  range. 
accelerators have been used t o  simulate the surface erosion of space- 
craft by so-called micrometeoroids of microgram s izes  and smaller. 
p ro jec t i les ,  however, cannot be made large enough t o  simulate pen- 
e t r a t ion  of spacecraft w a l l s .  

From Table I it can be seen tha t  

The e l ec t ros t a t i c  and the drag 

The 

Although the shaped charge j e t  hypervelocity launchers have a high 
velocity,  they a re  not used for  meteoroid simulation because the j e t  of 
material  ejected i s  i n  a very elongated cy l indr ica l  shape which i s  not 
useful as a meteoroid simulator. The exploding f o i l  launchers a l so  
have pro jec t i les  of very i r regular  shape making them unsuitable fo r  
simulation f o r  the s e e  reason. 
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The l i g h t  gas gun and the explosive drive are very similar with 
respect t o  the type of p ro jec t i l e s  and.launching techniques. 
ference l ies  i n  the mechanism used to  produce the high pressure and high 
temperature gases used t o  accelerate the  projeqt i le .  The explosive 
dr iver  u t i l i z e s  a detonation directed inwards t o  compress a gas whereas 
a l i g h t  gas gun uses a - r e l a t ive ly  massive pis ton t o  compress a gas. 
veldci ty  l i m i t  of the explosive dr ivers  has only recent ly  [41 been 
raised above t h a t  f o r  l i g h t  gas guns. 
explosive dr iver  launchers i s  due t o  a development i n  staging ex- 
plosions behind a pro jec t i le .  
ye t  been used f o r  meteoroid simulation, although they may be used i n  
the future  because'of. the more accurate simulation possible with a 
higher veloci ty ,  
special  f a c i l i t i e s  and techniques must be developed t o  handle the large 
amount of high explosive used i n  each f i r ing .  

The d i f -  

The 

The increased veloci ty  fo r  the 

The explosive dr iver  launchers have not  

. 
A hand.lcap of the explosive dr iver  launcher i s  tha t  

The l i g h t  gas gun is, therefore, the only launcher capable of 
routinely producing hypervelocity p ro jec t i l e s  of var iable  dimensions, 
mass, and velocity.  HOwever, the m a x i m u m  veloci ty  reaches only t o  the 
lower l i m i t  of the ve loc i t ies  of meteoroids which can be expected by a 
spaceship i n  ear th  orb i t .  

A contract  w a s  l e t  t o  develop a l i g h t  gas gun, according to  
Materials Division specif icat ions,  t o  prov'i.de meteoroid simulation 
capable of providing support fo r  design a c t i v i t i e s .  
contract  a th i rd  stage accelerator w a s  developed t o  augment the veloci ty  
capab i l i t i e s  of the basic l i g h t  gas gun. 

As a p a r t  of t h i s  

The l i g h t  gas gun as supplied by the contractor launches a 0.5 inch 
diameter p ro jec t i l e ,  
but i s  believed to  be above 7.6 km/sec (25,000 f t / sec)  fo r  the primary 
pro jec t i le .  
would be used as a sabot with a much smaller p ro jec t i l e  of i n t e r e s t  
imbedded i n  i t s  f ront  face. 
emerges from the l i g h t  gas gun bar re l  while the p ro jec t i l e  i s  allowed 
to  travel to  the ta rge t  unimpeded. 

The maximum veloci ty  has not ye t  been at ta ined 

For meteoroid tes t ing  the 0.5 inch polycarbonate p ro jec t i l e  

The sabot i s  destroyed and dispersed as it  

Two approaches were t r i e d  by the contractor i n  developing a th i rd  
stage accelerator.  The f i r s t  approach was t o  use  the f i r s t  o r  primary 
p ro jec t i l e  t o  shock compress a gas t o  a very high pressure. This high 
pressure and high temperature gas i s  then used t o  accelerate a second- 
ary p ro jec t i l e  which i s  much smaller than the primary pro jec t i le .  In- 
dications were t h a t  t h i s  approach w a s  l imited by energy losses from the 
very high temper t u r e  gasses by radiat ion 151. The second approach was  
t o  t r y  t o  s imul  
and the r e l a t ive ly  massive primary p ro jec t i l e  by using a gas column as 
the elastic medium. 
therefore, avoid increasing i t s  temperature to  a point where energy 

e an elastic collision'between the secondary p ro jec t i l e  

The thought was t o  avoid confining the gas and, 
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losses  become important. 
a l l  cases where the secondary p ro jec t i l e  emerged i n t a c t  i t  had a 
veloci ty  of 1.5 t i m e s  t ha t  of the primary p ro jec t i l e  161 

The r e s u l t s  of t h i s  approach showed tha t  i n  

These two approaches have produced a method of accelerating pro- 
jecti les t o  9.15 km/sec (30,000 f t / sec)  using a basic l i g h t  gas gun of 
7.55 km/sec (25,000 f t / sec)  capabili ty.  I n  addition, a method of com- 
bining the two approaches has been conceived. It i s  believed tha t  the 
combination eliminates problems from each of the accelerators  and allows 
an extension of the veloci ty  range t o  more than 10.7 km/sec (35,000 
f t/sec) . 

111. DESCRIPTION OF FACILITY 

The Materials Division Meteoroid Simulation Fac i l i t y  i s  shown i n  
Figure 3. 
veloci ty  launcher toward the bar re l  and the range tank. 

The view i s  from the breech end of the l i g h t  gas gun hyper- 

The description of the f a c i l i t y  w i l l  be divided in to  the following 
four sections:  the basic l i g h t  gas gun, the sabot techniques, the 
th i rd  stage accelerators,  and the range tank. 

A. Light Gas Gun 

A schematic diagram of the basic l i g h t  gas gun i s  shown i n  Figure 
4 .  
the breech, the pump tube, the  high pressure section, and the barrel .  
The breech i s  3.5 inches inside diameter and two f e e t  i n  length. 
designed t o  withstand 50,000 p s i  i n t e rna l  pressure.' However, during 
routine tes t ing  the propellant i s  chosen t o  keep the pressure lower than 
20,000 ps i .  
long. 
pis ton (which is shown i n  i t s  prelaunch posit ion).  
sect ion contains a taper from the pump tube t o  the 0.5 inch diameter 
barrel .  
from the barrel .  
compressed by the pis ton and by the extrusion pressures as the poly- 
ethylene pis ton i s  stopped are w e l l  beyond the elastic l i m i t  of the high 
pressure sect ion bore. 
verse square of the radius of the high pressure section. 
pressure sect ion i s  12 inches i n  outside diameter. 
ensures t h a t  there are always several inches of steel which have not 
been subjected t o  pressures beyond the elastic l i m i t .  
outer  area w i l l  then force the inside area back t o  i t s  or ig ina l  shape 
a f t e r  the gas pressure i s  dissipated.  The high pressure sect ion is a 
l imit ing fac tor  i n  the performance of the  l i g h t  gas gun. 

Physically the l i g h t  gas gun consis ts  of the following sections:  

It is  

The pump tube i s  2.5 inches ins ide  diameter and e ight  f e e t  
The pump tube contains hydrogen gas i n  f ront  of the polyethylene 

The high pressure 

A metal diaphragm burst  d i sc  separates t he  high pressure sect ion 
The pressures generated by the hydrogen gas as it  i s  

These pressures decrease, however, with the in- 
The high 

This large diameter 

This elastic 

Although the 
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high pressure sect ion can withstand pressures beyond the normal elastic 
l i m i t ,  these pressures cannot be increased indef in i te ly  because 
horizontal  extrusion of the steel  w i l l  begin t o  occur. 

The ba r re l  i s  0.5 inch i n  inside diameter by seven f e e t  long. The 
bar re l  a l so  imposes a l imi ta t ion  on the  performance of the gun. 
high pressure gases produced i n  the high pressure sect ion a l so  have 
very high temperatures. 
w a l l  as it flows down the bar re l  behind the pro jec t i le .  
main reason why hydrogen i s  used i n  the l i g h t  gas gun instead of helium. 
Due t o  basic differences in’molecular weight and i n  the r a t i o  of spec i f ic  
heats,  hydrogen gas operates a t  one-f i f th  the temperature of helium gas 
fo r  equivalent performance. 

The 

This high temperature gas can erode the ba r re l  
This i s  the 

The operation of the l i g h t  gas gun occurs i n  the following manner. 
The propellant i s  igni ted by the application of e l e c t r i c a l  current  t o  
an explosive squib. When the pressure generated by the burning pro- 
pe l lan t  reaches a predetermined value, the p is ton  i s  released. The 
propellant accelerates  the pis ton t o  2,000 to  2,500 ft/sec. The hy- 
drogen gas, which w a s  loaded i n t o  the pump tube before f i r i n g  i s  com- 
pressed by the advancing piston. When the hydrogen pressure reaches a 
predetermined value, the metal burst  disc  opens i n  a pe ta l l ing  fashion 
along grooves accurately machined on the disc  surface. The released 
gas then begins t o  accelerate the p ro jec t i l e  which w a s  placed approx- 
imately two inches from the burst  disc.  For bes t  resul ts  a constant 
pressure on the base of the projecti le‘would be ideal .  However, the 
pressure behind the p ro jec t i l e  has a tendency t o  drop as the p ro jec t i l e  
accelerates. To compensate f o r  t h i s  normal decrease, the pressure i n  
the high pressure sect ion must be continuously increased during the 
course of the acceleration. This i s  accomplished by the taper i n  the 
high pressure section. As the  pis ton extrudes i n t o  the taper, the 
volume of gas ge ts  smaller. Therefore, a fixed amount of forward move- 
ment of the pis ton i s  much more e f fec t ive  i n  ra i s ing  the pressure. 
This taper has been designed t o  increase the pressure f a s t  enbugh t o  
compensate f o r  the decrease i n  pressure due t o  expansion in to  the 
barrel .  
shows a pis ton before and a f t e r  a f i r i n g ,  
undergoes the most extrusion, actual ly  becomes l iqu id  and occasionally 
flows i n t o  the bar re l ,  
provides a method of extracting the pis ton from the high pressure 
sect ion a f t e r  a launch. 

The amount of pis ton extrusion can be seen i n  Figure 5 which 
The f ron t  surface, which 

The groove machined around the  base of the pis ton 

There are four main variable6 which control  the performance of a 
l i g h t  gas gun. They are the propellant mass, the pis ton mass, the hy- 
drogen gas pressure, and the p r o j e c t i l e  mass. The propellant mass has 
been the controlled var iable  i n  f i r i n g s  t o  date. 
has been var ied between 175 and 300 grams of standard M1 howitzer pro- 
pel lant .  The pis ton m a s s  and the hydrogen gas pressure have been kept 

The propellant mass 

6 



constant a t  1,300 grams and 95 psia ,  respectively,  The p ro jec t i l e s  
have been e i t h e r  two or  four gram cyl inders  of Lexan*, a polycarbonate. 

B. Sabot Techniques 

The 0,s inch diameter Lexan p r o j e c t i l e  i s  not i t s e l f  of i n t e r e s t  i n  
simulating meteoroids. However, a smaller p r o j e c t i l e  of i n t e r e s t  can be 
accelerated t o  hypervelocit ies on the f ront  face of the Lexan p ro jec t i l e .  
I n  t h i s  s i t ua t ion  the Lexan p ro jec t i l e  i s  ca l l ed  a sabot. 
t rac toc  w a s  addi t ional ly  asked t o  adapt standard sabot techniques t o  the 
extremely l imited ex is t ing  range tank. 
been modified as a r e su l t  of in-house development. 

The con- 

The contractor 's  design has s ince 

There are several  techniques which have been developed over the 
years f o r  separating a p ro jec t i l e  from i ts  sabot,  
techniques are:  (1) petall ing-type air-opening sabot; (2) gas separator 
tube with def lect ion ramp; (3) spinning segmented sabot; and (4) sabot 
s t r ipper .  
dump tanks i n  which the sabot fragments are allowed t o  disperse over a 
long distance and then are trapped while the p ro jec t i l e  goes through a 
hole i n  the center  of the t rap and reaches the target .  Only the sabot 
s t r ipping technique was considered capable of being adapted f o r  use i n  
the ex is t ing  (2-foot long) dump tank. 

Four of these 

Previously, a l l  of these techniques have been used i n  long 

Figure 6 shows a schematic diagram of the sabot s t r ippe r  and i t s  
associated gas separator tube as  delivered by the contractor.  The sabot 
and p r o j e c t i l e  a re  seen approaching the end of the l i g h t  gas gun barrel .  
The gas separator o r  compression tube i s  f i l l e d  with helium gas a t  90 
p s i a  contained by two Mylar- diaphragms which a re  0.001 inch thick.  
The s t r ippe r  cons is t s  of four diametrically opposed tungsten pins and i s  
attached t o  the end of the gas separator. 

After penetrating the f i r s t  Mylar diaphragm, the sabot w i l l  ex- 
perience a very strong retarding force generated by the gas which has 
been shock compressed t o  a very high pressure by the hypervelocity i m -  
pact. The p r o j e c t i l e  does not see t h i s  force, however, because it  i s  
t o t a l l y  immersed i n  the high pressure gas and sees no resu l tan t  force. 
Therefore, the p ro jec t i l e  should move pas t  the  s t r ipper  pins  before the 
decelerating sabot reaches them. This separation is  f o r  the purpose of 
protecting the p ro jec t i l e  from the damaging shock waves set up i n  the 
sabot upon impact with the s t r ipper  pins. These shock waves completely 
override the mechanical s t rength of both the sabot and the  s t r ipper  pins  
so tha t  there is no longer any ef fec t ive  cohesive bonding. 
highly pressurized cloud of sabot debris w i l l  then expand i n  a r a d i a l  
d i rec t ion  away from the l i n e  of f l i g h t  of the pro jec t i le .  
panding cloud is  stopped by the sabot t rap which i s  two feet downrange. 

Figure' 7 i s  a photograph of a 0.5 inch diameter Lexan sabot- 
Product of General Electric Company 

This shocked, 

This ex- 

* 
** Product of E. I. duPont de Nemours and Company 
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carrying a 1/8-inch diameter aluminum pro jec t i l e ,  a sabot s t r ippe r  pin 
holder before a launch, and a sabot t rap a f t e r  a launch. The l i nes  i n  
the debris pa t te rn  on the sabot t rap correspond t o  the posi t ion of the 
tungsten pins before the launch. 

The s t r ippe r  with gas separator as designed by the  contractor has 
been used on 16 in-house shots with aluminum pro jec t i les .  The r e s u l t s  
have been very inconsistent.  In  seven of the shots the p ro jec t i l e  was 
off axis  and w a s  stopped by the sabot trap.  
which a veloci ty  could be calculated the ve loc i t i e s  f o r  ident ica l  pro- 
pe l lan t  loading varied widely. I n  addition, onlyeone of the p ro jec t i l e s  
emerged without being deformed. 
p r o j e c t i l e  was not separating from the sabot with the r e s u l t  t h a t  the 
p r o j e c t i l e  w a s  a l so  being decelerated and subjected t o  a strong shock as 
the sabot impacted the pins.  

In  the remaining shots f o r  

The conclusion w a s  reached tha t  the 

When the conclusiyn was reached tha t  t he  gas separator did not per- 
form separation, the r e s u l t s  of several earlier test  shots were again 
analyzed. The test  shots consisted of p ro jec t i l e s  i n  sabots but no gas 
separators o r  s t r ippers  were used. 
separation took place even without a gas separator,  The mechanism of 

during 
the launch the sabot i s  highly compressed by the acceleration. When 
the sabot emerges from the barrel ,  the acceleration force i s  removed 
and the sabot expands t o  re l ieve  the compression. It i s  believed tha t  
the expansion and subsequent unconstrained osc i l l a t ions  are su f f i c i en t  
t o  separate the p ro jec t i l e  from the sabot. 

The X-ray images showed tha t  

'separation i n  the test  shots was postulated t o  be as follows: 

To make u s e  of t h i s  natural  separation the sabot s t r ipper  a t tach-  
ment was redesigned. The new design i s  termed a f r e e  f l i g h t  separator 
and i s  shown i n  Figure 8. 
gas separator the f r e e  f l i g h t  separator has a tube with a bore of 5/8 
inch diameter which i s  larger  than the bore of the barrel .  This tube 
allows the sabot t o  t r ave l  approximately 12 inches before i t  impacts 
the s t r ippe r  pins. 

I n  place of the compression tube used i n  the 

Results have shown tha t  use  of the f r e e  f l i g h t  separator has 
d i r ec t ly  solved the problem of veloci ty  var ia t ion.  
predictable from the l i g h t  gas gun loading'eonditions and i s  no longer 
dependent on var iables  associated with the gas separator tube. 
addition, the elimination of the gas separator tube var iables  has made 
i t  possible t o  study the in te rac t ion  between the sabot and pro jec t i le .  
For instance, i t  w a s  discovered tha t  the aluminum pro jec t i l e s  being used 
were de f in i t e ly  extruding unless f u l l y  cradled i n  a spherical  seat. 

The veloci ty  i s  now 

I n  

Another problem with the sabot s t r ipping mechanism which has not  
been mentioned i s  the sabot debris which may follow the p r o j e c t i l e  t o  
the ta rge t ,  The degree of dispersion of the sabot debris is  strongly 
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dependent on the shape of the s t r ippe r  pins and the pin interference.  
Research is continuing t o  improve the dispersion i n  an e f f o r t  t o  . 
completely eliminate the debris which may go through the  p r o j e c t i l e  hole 
i n  the sabot t rap and impact the target .  
reaches the t a rge t  with the present design i s  so f ine ly  dispersed tha t  
i t  normally cannot produce su f f i c i en t  damage on the t a rge t  t o  be confused 
with the damage from the p ro jec t i l e .  

However, the debris  yhich 

C. Third Stage Accelerators 

The term "third s tage accelerator" i s  applied t o  the accessory 
launching assembly which bol t s  onto the muzzle of the l i g h t  gas gun. 
For comparison, the f i r s t  s tage of the series i s  defined as the  
accelerat ion of the p is ton  by the burning propel lant  and the second s tage 
is  defined as the  acceleration of the primary p ro jec t i l e  by the com- 
pressed gas i n  the high pressure section. 
are designed to  accelerate  a r e l a t ive ly  l i g h t  secondary p r o j e c t i l e  by 
u t i l i z i n g  the k ine t i c  energy of the primary p ro jec t i l e .  

The th i rd  s tage accelerators 

Two concepts fo r  a th i rd  s tage accelerator  were developed and 
tes ted  under the development contract  15, 61. 
diagram of the f i r s t  concept. 
because the secondary p r o j e c t i l e  i s  launched down a tube with a smaller 
diameter than the bar re l  of the l i g h t  gas gun, A gas such as helium i s  
contained i n  the compression tube by a Mylar diaphragm a t  the bar re l  end 
and the secondary p ro jec t i l e  a t  the other end. As the primary p ro jec t i l e  
breaks the diaphragm and en ters  the compression tube, i t  raises the gas 
pressure which releases  the p r o j e c t i l e  and accelerates  it. The d i f f e r -  
ence-between t h i s  concept and the pr inc ip le  used i n  the second s tage of 
the l i g h t  gas gun is  t h a t  the primary p r o j e c t i l e  i s  t ravel ing f a s t e r  
than the speed of sound i n  the gas which i t  i s  compressing, Therefore, 
the primary p r o j e c t i l e  produces a shock wave and the secondary pro- 
ject i le  i s  subjected to  a very strong pressure pulse. I n  addition, the 
shock.wave w i l l  r e f l e c t  off  the secondary p ro jec t i l e ,  go back to  r e f l e c t  
off the primary p ro jec t i l e ,  and t r ave l  forward again as an even stronger 
second pressure pulse,  The conditions can be set up so tha t  the second- 
ary p ro jec t i l e  i s  s t i l l  i n  the launch tube when the second'and even 
th i rd  shock waves reach it. 

Figure 9 i s  a schematic 
This i s  ca l led  a reduced area accelerator 

It w a s  found tha t  i n t a c t  p ro j ec t i l e s  could be launched with t h i s  
reduced area accelerator  up t o  a ve loc i ty  of approximately 8.85 lun/sec 
(29,000 f t / s ec ) .  This l imi ta t ion  was believed t o  be due t o  the energy 
losses  which become important a t  the tremendously high pressures and 
temperatures which are generated a f t e r  two or three shock compressions. 
It should be noted tha t  a l l  tests w e r e  made with a 1/16-inch diameter 
launch tube except f o r  two tests with a 3/16-inch diameter launch tube. 

The study of the reduced area accelerator  i s  continuing in-house. 
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It is believed tha t  fur ther  tes t ing  w i l l  determine an optimum diameter 
for  the launch tube. 
types of p ro jec t i l e  re lease mechanisms and with p ro jec t i l e  dimensional 
tolerances with respect t o  the launch tube diameter. 

Shots t o  date ljave experimented with various 

In  an e f f o r t  t o  circumvent the energy losses associated with the 
reduced area accelerator,  the second concept was developed. The second 
concept w a s  t ha t  of a constant area accelerator,  
schematic diagram of the constant area accelerator.  The description of 
the operation of t h i s  accelerator i s  the same as  tha t  fo r  the reduced 
area accelerator.  
the compressed gas. 
fined i n  the compression tube as the kinet ic  energy of the primary pro- 
j e c t i l e  is converted t o  potent ia l  energy i n  the highly compressed gas. 
The energy i s  thdn reconverted to  k ine t ic  energy as  the gas expands 
down the launch tube behind the secondary pro jec t i le .  In  the constant 
area accelerator the gas acquires kinet ic  energy immediately since it  i s  
not constrained to  one volume i n  space but i s  allowed to  follow the 
secondary p ro jec t i l e  down the launch tube. It would be expected tha t  
the elimination of one stage of energy conversion would make the con- 
s t an t  area accelerator inherently more e f f i c i e n t  than the reduced area 
accelerator. This was confirmed experimentally, In  a l l  val id  t e s t s  of 
the constant area accelerator,  i t  was found tha t  the secondary pro- 
j e c t i l e  emerged with a velocity of 1.5 times that  which the primary 
p ro jec t i l e  had before it entered the compression tube. This indicated 
tha t  there were no energy l imitat ions entering in to  the launch cycle 
up to 9.45 kmlsec (31,000 f t / s ec )  which was the highest velocity which 
the secondary pro jec t i le  could acquire without breaking up due t o  the 
mechanical s t resses  during acceleration. 

Figure 10 i s  a 

The difference l i e s  i n  the dibposition of energy i n  
In  the reduced area accelerator the gas is  con- 

AS can be seen i n  Figure 10, the secondary pro jec t i le  i n  the cos- 
s t an t  area accelerator m u s t  be a very thin f l a t  disc  f o r  minimum mass 
compared to the primary pro jec t i le .  
weak p rb jec t i l e  but a lso i t  i s  not a shape which i s  useful fo r  meteoroid 
sfmulation. 

Not only i s  t h i s  a mechanically 

The r e su l t s  of these t e s t s  combined with the r e w l t s  of experiments 
on the extrusion of pro jec t i les  in to  reduced area bores / 7 ]  led t o  a 
method i n  which it may be possible t o  reduce the s i ze  of the p ro jec t i l e  
to  a more useful shape and s t i l l  make use of the concept of a constant 
area accelerator.  
entrance accelerator. 
tapered entrance accelerator.  

This combination has been designated the tapered 
Figure 11 shows a schematic diagram of the 

It has been found 171 tha t  Lexan w i l l  extrude in to  a taper even 
a t  hypervelocities. 
tha t  the feont face of the p ro jec t i l e  actual ly  accelerates and a section 
w i l l  separate when the veloci ty  d i f f e ren t i a l  becomes suf f ic ien t .  

A very useful feature  of the extrusion process i s  

It is 
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believed t h a t  t h i s  accelerated and separated sect ion of the primary pro- 
jectile can be used as the driving p is ton  i n  a constant area accelerator 
with a bore much less than tha t  of the basic l i g h t  gas gun. 
allow the p ro jec t i l e  t o  be made much smaller i n  mass and a l so  t o  be i n  
a cy l indr ica l  shape with a length t o  diameter r a t i o  c lose t o  one. 
shape i s  very strong and a l so  can be useful i n  meteoroid simulation. 
i s  estimated t h a t  with the added advantages of t h i s  tapered entrance 
accelerator  the veloci ty  l i m i t  w i l l  be between 10.6 and 12.2 km/sec 
(35,000 and 40,000 f t / sec) .  Experiments t o  test  the  concept of the 
tapered entrance accelerator  a re  planned. 

This would 

This 
It 

I). Range 

The range tank of the meteoroid simulation f a c i l i t y  can be seen i n  
Figure 12 .  
the p ic ture ,  the dump 
tank, the X-ray tank, and the t a rge t  tank. The impact f l a sh  detector 
can be seen attached t o  a Plexiglas* window on the ta rge t  tank. Also, 
the three pulse X-ray tubes can be seen attached t o  an external  frame. 
The three tubes a re  a t  60 degree in te rva ls  around the l i n e  of f l i g h t  
and each tube has i t s  own long narrow window and i t s  own X-ray f i lm 
cas se t t e  which i s  introduced through an opening i n  the bottom of the 
X-ray tank. 

This view shows the range tank i n  the r i g h t  hand s ide of 
The range tank i s  divided i n t o  three sections:  

A schematic diagram of the range i s  shown i n  Figure 13. The 
muzzle b l a s t  and the sabot debris a re  contained i n  the dump tank so 
t ha t  the pressure pulses a re  kept away from the ta rge t  as much as 
possible.  

After the p r o j e c t i l e  leaves the dump tank, i t  passes through the 
muzzle detector which produces an e l e c t r i c a l  t r igger  pulse when the pro- 
j ec t i le  breaks an infrared beam. 
of three X-ray pulses as the p r o j e c t i l e  i s  t ravel ing over the X-ray 
fi lm, 

The t r igger  pulse starts a succession 

This information i s .used  f o r  making veloci ty  measurements. 

The f l a sh  detector  on the t a rge t  tank monitors the l i g h t  output of 
the impact. 
measurement. 

This information i s  used f o r  making a redundant veloci ty  

A t  present the t a rge t  tank i s  r e l a t ive ly  s m a l l  as can be seen i n  
The t a rge t  must physically f i t  through a 10-inch diameter Figure 12. 

po r t  and be less than 10 inches deep. 
designed and fabricated and w i l l  soon be attached t o  the range. 

An enlarged ta rge t  tank has been 

The new t a rge t  tank has dimensions of 28 inches deep by 36 inches 

There are two opposing windows on e i t h e r  s ide of the p ro jec t i l e  
wide by 48 inches high. 
high. 
l i n e  of f l i g h t  which can be used f o r  photographing the p ro jec t i l e  impact. * 

The tank door is  27 inches wide by 27 inches 

A product of Rohm and Haas Company 
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A t h i r d  po r t  i n  the top of the tank can be used fo r  multiple electrical 
feedthrus when it  is  desired t o  instrumen the target .  
system f o r  the  new tank i s  capable of lo-' to r r .  It w i l l  be possible  
t o  extend the vacuum capab i l i t i e s  t o  higher vacuum i f  i t  is required 
f o r  a spec i f ic  tes t ,  

The vacuum 

I V .  INSTRUMENTATION 

The f i r i n g  and control  instrumentation i s  located i n  the control  
room adjacent t o  the room containing the  l i g h t  gas gun and range tank. 
Figure 14 i s  a photograph of the instrumentation racks i n  the control  
room, Shown i n  the re lay  rack on the r i g h t  from top t o  bottom i s  the 
following instrumentation: a pulsed X-ray control  un i t ,  an intercom 
uni t ,  and an oscilloscope used to  display t i m e  varying s ignals  such as 
impact f lash.  From top t o  bottom the re lay  rack a t  l e f t  contains the 
following: four-one-tenth microsecond t i m e  i n t e rva l  counters; a switch 
t o  c lose the vacuum valve on the range tank before f i r i n g ,  the f i r i n g  
control  panel, and the electrical cable patch panel. Seen on the back 
w a l l  i s  the gas loading panel used t o  charge the  pump tube with hydro- 
gen gas p r i o r  t o  f i r i ng .  

The descr ipt ion of the instrumentation w i l l  be broken down in to  
the spec i f ic  systems and the functions which they perform. The systems 
which w i l l  be described are the following: 
tec tor ,  the muzzle detector ,  p r o j e c t i l e  veloci ty  detector,  impact f l a sh  
detector,  and crono-detector. In  addition a photographic system which 
is  presently on order w i l l  be described. 

the p is ton  veloci ty  de- 

A. Piston Velocity Detector 

The p is ton  veloci ty  detector  i s  a system f o r  measuring the veloci ty  
of the f i r s t  s tage p is ton  j u s t  before i t  en ters  the high pressure section. 
!This detector  i s  used mainly as a diagnostic too l  and i s  not used on 
every f i r i ng .  The measured pis ton veloci ty  i n  a given f i r i n g  gives a 
more accurate estimate of the veloci ty  of the primary p ro jec t i l e  than 
does the propellant mass. This feature i s  used f o r  calculat ing the 
veloci ty  augmentation when using th i rd  stage accelerators  s ince the 
primary p ro jec t i l e  i s  e i t h e r  destroyed o r  decelerated. 
has also been used t o  determine whether o r  no t  a var ia t ion  i n  p ro jec t i l e  
veloci ty  fo r  i den t i ca l  loading conditions i s  due t o  some var iable  i n  the 
f i r s t  s tage of acceleration. 

This detector 

A schematic diagram of the p is ton  veloci ty  detector  is  shown i n  
Figure 15. The three probes f o r  the detector  are near the end of the 
pump tube and are spaced one foot  apart .  Essent ia l ly ,  the probe i s  a 
cen t r a l  w i r e  insulated from a surrounding tube which i s  a t  ground 
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potent ia l .  
builds up i n  f ront  of the piston. 
tube, i t  successively w i l l  deform each probe so tha t  the cent ra l  wire 
i s  e l ec t r i ca l ly  shorted t o  ground. 

The probe i s  designed t o  sea l  against  the pressure which 
As the pis ton t ravels  down the pump 

When the probe i s  shorted a capacitor charging current w i l l  flow 
through the gate of a s i l i con  controlled r e c t i f i e r  (SCR). 
application of the gate signal,  the SCR w i l l  go from the non-conducting 
s t a t e  t o  the conducting s t a t e .  Simultaneously, the potent ia l  a t  the 
cathode of the SCR w i l l  drop from the bat tery voltage t o  very near 
ground potent ia l .  Since the turn-on time of an SCR i s  approximately 
one microsecond, the voltage drop can be considered as a s tep function 
when compared t o  approximately 500 microseconds between probe signals.  
The bat tery voltage and dropping r e s i s to r s  a re  chosqn so tha t  suf f ic ien t  
current w i l l  flow through the conducting SCR's to  keep them i n  the con- 
ducting state indefini te ly .  

Upon 

The voltage changes a t  the cathodes of the SCR's are used to  
t r igger  the inputs of two t i m e  in terval  counters. The s t a r t  input-of 
counter number one i s  triggered when SCR number one begins t o  conduct 
as the piston shorts  out probe number one. 
pulses from an in te rna l  10 megahertz clock u n t i l  it is stopped by a 
voltage change a t  the anode of SCR number two. 
s t a r t  and stop when the piston shorts out probe numbers two and three, 
respectively. 
one foot intervals ,  therefore, is  displayed on the time in te rva l  rmunters 
In microseconds. 
as  the fnverse of the rime interval. 
t o  date have ranged fram 1,800 t o  2,200 f e e t  pes second. 

The counter w i l l  count 

Counter number two w i l l  

The t i m e  i t  takes fo r  the pis ton t o  t ravel  two successive 

The velocity i n  rAeet per second i s  simply calcufatett 
The ve loc i t ies  of pistons measured 

This detectnr was. designed for the puwose of salving an immediate 
problem fn p r o j e c t i l e  veloci ty  variatictn. 
rexat ivelg simple t o  a ~ ~ i d  a pralonged dete or deyeloRmnt delay. The 
simplicity could be ta2erated i n  this  detec r because the slow speed 
of the pis ton does not require exceptionally high speed c i rcu i t ry .  This 
detector has now been i n  use f o r  several  months and has been found t o  be 
very r e l i ab le  and simple to  use. 

%e c i r c u l t  q&%s kept 

B. Muzzle Detector 

The muzzle detector i s  a system which de tec ts  the passage of the 

As was shown i n  Figure 13 the muzzle detector i s  
p ro jec t i l e  and provides an output t r igger  f o r  synchronizing other 
e l e c t r i c a l  systems, 
positioned i n  the up-range end of the X-ray tank. 
traverse the dump tank and pass through the sabot trap before i t  reaches 
the muzzle detector. 

The p ro jec t i l e  must 

A block diagram of the muzzle detector i s  shown i n  Figure 16. The 
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detecting element i s  a photo-resistive diode on which is focused the 
l i gh t  from a GaAs infrared l i g h t  emitting diode. 
is positioned so that the p ro jec t i l e  w i l l  b the l i g h t  beam. The 
photo-resist ive diode i s  chosen so tha t  i t s  speed of response i s  
suf f ic ien t  to reg is te r  the passage of a hypervelocity pro jec t i le .  The 
resu l tan t  voltage change across the photo-resist ive diode is amplified 
and converted to  an output pulse capable of tr iggering other e lectronic  
equipment. The output t r igger  i s  a posi t ive 45 v o l t  pulse with a r i s e  
time of 20 nanoseconds. 

The muzzle detector 

The muzzle detector a l se  contains a t e s t  modulator which drives 
the l i g h t  emitting diode to simulate the passage of a pro jec t i le .  
provides a means of adjusting the sens i t i v i ty  of the system to detect  
p ro jec t i les  of various diameters and ve loc i t ies .  

This 

C. Projec t i le  Velocity Detector 

The p ro jec t i l e  velocity detector i s  a system fo r  making three 
consecutive measurements of the pro jec t i le  posi t ion with respect to  
time. The three measurements give two independent determinations of 
the p ro jec t i l e  velocity.  The velocity i s  calculated as the distance 
traveled between two measurements divided by the time between the 
corresponding measurements. 

A\block diagram of the p ro jec t i l e  velocity detector i s  shown i n  
Figure 17. The three pulsed X-ray uni ts  provide the posit ion information 
while two time in te rva l  counters provide the t i m e  between X-ray images. 
The e l e c t r i c a l  t r igger  from the muzzle detector is  used t o  simultaneously 
s t a r t  the three t i m e  delay g.enerators. 
one of the pulse type X-ray tubes a f t e r  a preset  delay. 
s e t  before the shot so tha t  the X-ray pulses w i l l  record three successive 
images of the p ro jec t i l e  as it travels  down the l i ne  of f l i gh t .  
X-ray pulse i s  recorded on individual X-ray film. Each pulse illuminates 
an area of one inch by 18 inches long.- A f iduc ia l  l i ne  which i s  the i m -  
age of a thin wire i s  common t o  a l l  three films. The f iduc ia l  l i ne  is 
used as  a reference f o r  making posit ion measurkments. 

Each time delay w i l l  t r igger  
The delays are  

Each 

A s  each X-ray tube f i r e s ,  a simultaneous s ignal  i s  sent to  the t i m e  
in te rva l  counters. Each counter measures the t i m e  between two success- 
ive X-ray pulses. These counters measure down to  one tenth of a micro- 
second. 
ever be shorter  than 10 microseconds, the time in te rva l  f o r  the veloci ty  
measurements can be considered accurate t o  one per cent or  bet ter .  
Similarly, the accuracy of the poi i t ion  measurements i s  kept a t  approx- 
imately one per cent by measuring down t o  one millimeter and keeping 
successive images a t  l e a s t  10 centimeters apart ,  The X-ray pulse i s  
only 70 nanoseconds long which is  suf f ic ien t ly  short  t o  eliminate blur 
due to  movement of the pro jec t i le .  

Since it  i s  not expected tha t  the time between pulses w i l l  

It should be noted tha t  a correction 
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i s  made t o  the posi t ion measurements because of paral lax between the 
p ro jec t i l e  l i ne  of f l i g h t  and i t s  image on the fi lm which is 6.35 c m  
away. 

Figure 18 i s  a p r i n t  of two X-ray negatives showing two types of 
sabots and pro jec t i les .  
i n  these t e s t s .  

The s t r i p p e r  pins and sabot trap were not used 

D. Impact Flash Detector 

One' feature  of hypewelocity impact i s  tha t  a very short  but bright 
f lash  of l i gh t  i s  emitted upon impact. 
a very high speed photodiode as a sensing element. 
photodiode i s  amplified suf f ic ien t ly  so t ha t  the signal can be d i s -  
played on an oscilloscope. 
detector. 
f o r  a redundant p ro jec t i l e  velocity measurement. However, the impact 
f l a sh  also gives information about the a r r iva l  of sabot debris a t  the 
target .  It can be determined whether there was a large amount af de- 
b r i s  and also whether i t  arrived a t  the ta rge t  before or a f t e r  the 
pro jec t i le .  

The impact f l a sh  detector uses  
The output of the 

The oscilloscope i s  triggered by the muzzle 
A t  present the impact f lash  information i s  being used mainly 

E. Crono-Detector 8 

The crono-detector is another system fo r  a redundant veloaify 
measurement used when another layer of material  w i l l  not a f f ec t  the 
ta rge t  damage. 
capacitor,  
sheet and a voltage difference applied. 
by the p ro jec t i l e  a cloud of ionized gas i s  formed and a discharge 
occurs between the two charged surfaces. 
amplified and displayed on an oscilloscope. Two types of crono-cards 
have been used. 
been deposited on thin paper while the other type i s  very thin doubly 
aluminized Mylar. 

The sensing element cal led a crono-card-is similar t o  a 
Two conductive surfaces a re  applied t o  a thin insulating 

When t h i s  sheet is penetrated 

This discharge p u l s e \ i s  

One type has closely spaced conductive l i nes  which have 

F, Photographic Sys tem 

I n  many cases a dynamic analysis of an impact is of great value i n  
assessing ta rge t  damage. This i s  especially t r u e  fo r  targets  which have 
more than one layer of material  such as  meteoroid bumper configurations. 
For th i s  reason a system capable of making sequential photographs of a 
hypervelocity impact has been obtained. 

The system consis ts  of six imaging devices arranged around a multi- 
faced p r i s m  so tha t  a l l  six images see ident ica l  views through a s ingle  
opt ical  lens. 
and a Polaroid f i lm holder. 

Each imaging device consis ts  of an image converter tube 
An image converter tube operates i n  the 
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following manner: 
of the tube, a corresponding electron cloud is  produced by photo- 
emission. 
the or ig ina l  op t ica l  image i s  then accelerated toward the rear  face of 
the tube by a high voltage pulse. 
the phosphor-coated rear  face: l i g h t  is  emitted i n  d i r ec t  proportion 
t o  the electron density, 
on Polaroid film. 

when an opt ica l  image is  focussed on the f ron t  face 

W s  electron cloud with a density d is t r ibu t ion  ident ica l  to  

When these high energy electrons h i t  

This s l i gh t ly  enhanced image is  then recorded 

The usefulness of the image converter i s  not i n  the enhancement 
of the image but i'n the f a c t  tha t  an image can be produced even with 
extremely f a s t  high voltage pulses. 
ducdng exposures as short  as f ive  nanoseconds which i s  f a s t  enough to  
stop motion i n  a hypervelocity impact. 
exposure times, the system w i l l  have variable interframe delay t i m e s  
ranging from f ive  nanoseconds to  50 microseconds. This makes possible 
an equivalent framing r a t e  up t o  100,000,000 frames per second. The 
interframe times can,be controlled individually to  provide a picture  
sequence which yields  the m a x i m u m  information from a specif ic  p ro jec t i l e  
and target .  

This system'is capable of pro- 

In  addition to  the variable 

The basic opt ics  of the system produce a 2.5 inch diameter image of 
a 7-inch diameter object. 
image t o  object r a t io .  
tensi ty  capable of producing the illumination needed for  the extremely 
short  exposure times. 

Accessory close-up opt ics  w i l l  provide a 1:l 
The necessary l i g h t  sources are  of high in- 

With t h i s  system it w i l l  be possible to  analyee the effectiveness 
of meteoroid bumper configuration i n  breaking up a pro jec t i l e  and dis-  
persing the debris. 
can be seen. 

Xn addition the reaction a f  the ta rge t  or insulat ion 

V. Results 

' The primary infoneation from the hypervelocity launches performed 
during the proof and development phase of operation of the Meteoroid 
Simulation Fac i l i t y  a re  summarized i n  Table 11, Included i n  the tab le  
a re  the following items: the mass of propellant used, the resul t ing 
velocity,  p ro j ec t i l e  information, and any. special  remarks. There have 
been three major changes i n  the l i g h t  gas gun or  i t s  operation which 
should be noted. These are a change i n  the pump tube loading gas, a 
change i n  bar re l  diameter, and a change i n  p ro jec t i l e  mass. 
change was the conversion of the pump tube loading gas from helium to  
hydrogen, This.conversion took place a f t e r  shot 21 when hydrogen was 
approved f o r  use-in the Meteoroid Simulation Fac i l i ty ,  
veloci ty  f o r  ident ica l  propellant mass was raised s l igh t ly  by using the 
l igh ter  gas, -the prime reason f o r  the conversion was tha t  hydrogen has 
a much'lower temperature than helium for  the same.performance. 
sequently, there i s  much l e s s  erosion of the metal a t  the bar re l  entrance. 

The f i r s t  

Although the 

Con- 
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The second da jor  change i n  the l i g h t  gas gun w a s  the  replacement 
of the old, much used, and previously enlarged 0.63 inch diameter 
ba r re l  with a new 0.50 inch diameter barrel .  
place a f t e r  shot 38. 
sized bar re l  did nbt  immediately raise the ve loc i ty  i s  not surpr is ing 
because p ro jec t i l e s  of the same mass were being f i red .  With the 0.63 
inch diameter ba r re l  a 4.0 gram p r o j e c t i l e  had a length t o  diameter 
r a t i o  of approximately one while a 4.0 gram p r o j e c t i l e  i n  the 0.5 
inch diameter ba r re l  had a r a t i o  of approximately two. 

This replacement took 
The f a c t  t ha t  the replacement with a cor rec t ly  

The t h i r d  change i n  the operation of the  l i g h t  gas gun brought 
the length t o  diameter r a t i o  of the p r o j e c t i l e  back to  one. 
reduction i n  length r e s u l t s  i n  a p r o j e c t i l e  of 2.0 grams. 
gram sabot w a s  used i n  a l l  shots a f t e r  number 44. 
seen i n  Table 11, t h i s  last  change had the g rea t e s t  e f f e c t  on the 
veloci ty .  Veloci t ies  of more than 7.0 km/sec (23,000 f t / sec)  are 
now being reached rout inely with only 240 grams of propellant.  

This 
The 2.0 

As it can be 

The f i r i n g s  during t h i s  proof and development phase of the 
operation of the meteoroid simulation f a c i l i t y  were devoted t o  
increasing the ve loc i ty  a t ta inable  with the l i g h t  gas gun, and associated 
th i rd  stage accelerator  while a t  the  same t i m e  producing p ro jec t i l e s  
which are not damaged during the launch cycle and are  of a shape 
applicable t o  meteoroid simulation. 
ve loc i ty  versus propellant mass fo r  the d i f f e ren t  f i r i n g  conditions. 
Curves are s h a m  f o r  the 0.63 inch diameter ba r re l  both W t h  h e l i u m  
and with hydrogen as the driving gas and the  0.50 inch diameter ba r re l  
with sabot s t r ippe r  u s i q  both the  Gas separator and with the free 
f l i g h t  separator.  
produced these curves because most of the  f i r i n g s  were designed ta 
test new techniques and obviously w e r e  not indicat ive of r e s u l t s  which 
can be expected under optimum conditions, The top curve w i l l  be used 
far predicting p r a j e e t i l e  ve loc i t ies '  f o r  fu tu re  f f r ings .  
be noted tha t  ve loc i t i e s  i n  excess o€ 7.65 W s e c  (25,000 ftlsec) are 
expected s ince the l i g h t  gas gun has already been f i r e d  with 300 
grams of propellant (shot 36) and only 240 grams of propellant i s  
needed t o  produce 7.0 km/sec (23,000 f t / s ec )  (shot 60). 

Shown i n  Figure 19 i s  a graph of 

Some judgement was used i n  choosing the points  which 

It should 

The sabot s t r ippe r  technique has been shown i n  shots 44 through 63 
t o  be useful i n  yielding s m a l l  p ro j ec t i l e s  with ve loc i t i e s  up t o  7.0 
km/sec (23,000 f t / sec) .  
inch diameter spheres of 1100 series aluminum, 
r e l a t ive ly  s o f t  aluminum w i l l  extrude under the  launch accelerat ion 
unless f u l l y  cradled i n  a spherical  seat. However, i t  was found t h a t  a 
deep spherical  seat raises the probabi l i ty  of a p ro jec t i l e  being 
forced off the center  l i n e  and impacting the sabot trap.  Future 
t e s t ing  w i l l  be used t o  determine the optimum depth of the spherical  
seat f o r  aluminum pro jec t i l e s ,  

The p ro jec t i l e s  used i n  these tests were 1/8 
It was found tha t  t h i s  

Stronger materials are not  expected 
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t o  have t h i s  extrusion problem. 

The extrusion of the aluminum may have been the cause fo r  the poor 
results when using the gas separator tube. The p r o j e c t i l e  tended t o  
have a var iab le  ve loc i ty  lower than expected and alsn the p r o j e c t i l e  
qu i te  of ten  was forced off of the center  l i n e  during the s t r ipping 
operation. 
i n to  i t s  seat i n  the sabot and would not separate upon entering ‘the 
gas separator tube. 
t h i s  point.  

These two f a c t s  would be explained i f  the aluminum extruded 

Future tests with differenf  materials w i l l  c l a r i f y  

Two f i r i n g s  with the constant area accelerator  and four f i r i n g s  
with the reduced area accelerator  were made during t h i s  phase. 
constant area accelerators  used i n  shots  4 and 6 were supplied by the 
contractor and f i r e d  r e l a t ive ly  heavy d iscs .  The reduced area 
accelerators  (shots 17, 18, 21,  and 37) were new designs produced i n  
the in-house research program. 
a veloci ty  of 7.68 km/sec (25,200 f t / s ec )  a f t e r  the  th i rd  design i m -  
provement w a s  encouraging. The development of improved accelerators  
w i l l  be speeded as the problems associated with the basic l i g h t  gas 
gun are solved. 

The 

The attainment of a p r o j e c t i l e  with 

Targets of many d i f f e ren t  kinds have been used t o  stop the pro- 
ject i le .  
on the performance of the l i g h t  gas gun and the accelerators .  There 
were, however, several  shots i n  which the t a rge t  yielded in te res t ing  
resul ts .  

The prime purpose of the ta rge ts  has been t o  y ie ld  information 

Figure 20 shows the t a rge t  used i n  shot 24. The t a rge t  is  one inch 
thick case hardened 4140 s t e e l  and the p ro jec t i l e  was a four gram 
cylinder of Lexan t raye l l ing  a 5.10 km/sec (16,700 f t / s ec )  . 
view shows the c r a t e r  produced by the p r o j e c t i l e  and the r i g h t  view 
shows the spal led area on the rear face. 
j e c t i l e  spa11 occurs a t  a l l  ve loc i t i e s  higher than 4.11 km/sec (13,500 
f t / s ec ) .  

The l e f t  

With the 4 gram Lexan pro- 

Figure 2 1  shows the t a rge t  used i n  shot 11. The ta rge t  is  one inch 
thick steel  protected by 0.062 inch thick aluminum bumper a t  a f i v e  inch 
standoff.  The i n t e r e s t  here l ies  i n  the circular symmetry of the pa t te rn  
on the target .  The p r o j e c t i l e  w a s  four grams of Lexan and w a s  t rave l l ing  
a t  4.31 km/sec (14,100 f t / s ec ) .  The deformation of the bumper w a s  not 
due t o  the p ro jec t i l e  impact but w a s  due t o  the pressure pulse generated 
between the bumper and the t a rge t  by the complete vaporization of four 
grams of Lexan. This pressure pulse w a s  a fea ture  of a l l  shots i n  which 
the large p r o j e c t i l e  w a s  used. 

Figure 22 shows the ta rge t  used i n  shot 55 f o r  which the s t r ippe r  
was used. The p r o j e c t i l e  was a 0.047 gram sphere of aluminum travel ing 
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a t  6.75 km/sec (22,100 f t /sec>:  
was separated from the aluminum targe t  by 2.5 inches. 
t h a t  the  bumper broke the  p ro jec t i l e  i n to  many s m a l l  droplets  and spread 
these over a r e l a t ive ly  large area. 
the circular p ro jec t i l e  hole are due to  sabot debris  which got  through 
the sabot trap because of incomplete dispersion. Although the debris 
can penetrate a bumper i t  does negl igible  damage on the ta rge t  as was 
seen on several shots i n  which the p ro jec t i l e  w a s  off  axis and h i t  the 
sabot trap.  
the debris,  however, because the debris may introduce complications 
other than d i r e c t  damage to  the target .  
t a rge t  used i n  shot 50 i n  which an unusual e f f e c t  occurred. 
i n  the ta rge t  is  the same as tha t  which would occur if no bumper was 
there. 
p ro j ec t i l e  made a hole i n  the bumper through which the p ro jec t i l e  
t raveled undamaged. 

The 0.012 inch thick aluminum bumper 
It can be seen 

The holes i n  the bumper other than 

Research i s  continuing i n  an e f f o r t  t o  completely eliminate 

Figure 23 shows the bumper and 
The crater 

It i s  postulated tha t  some sabot debris  ahead of the aluminum 

V I .  CAPABILITIES 

The capab i l i t i e s  of the Meteoroid Simulation Fac i l i t y  w i l l  be 
described by summarizing the capab i l i t i e s  of the individual items of 
apparatus and instrumentation described earlier and by re la t ing  these 
t o  simulation test programs. 

The basic l i g h t  gas gun has been shown t o  be extremely versatile 
both for  s i m p l e  meteoroid simulation and for  research i n  veloci ty  aug- 

' mentation. The l i g h t  gas gun i s  capable of launching p ro jec t i l e s  from 
1/2 inch i n  diameter down to  3/32 inch i n  diameter by using the accessory 
sabot s t r ipper .  
although p ro jec t i l e s  with high d u c t i l i t y  may require  special  care i n  
launching. 
j e c t i l e s  with various diameters normally below 0.25 inch. 
s t a n t  area accelerator  w i l l  launch f l a t  d i sc  shaped p ro jec t i l e s  of 0.5 
inch diameter and thickness normally less than 0.05 inch. 

There is no evidence of a p ro jec t i l e  density l imitat ion 

The reduced area accelerator w i l l  launch cy l indr ica l  pro- 
The con- 

After launch, the p ro jec t i l e  is  detected and photographed on three 
successive X-ray plates .  The three images y ie ld  two independent 
measurements of the p ro jec t i l e  veloci ty  which are accurate t o  approx- 
imately two percent. I n  addition the images can be used to  determine 
whether the p ro jec t i l e  has been damaged o r  deformed. 

A photographic system is able t o  give s ix  sequential  photographs 
of an impact process with a var iable  framing rate up t o  100,000,000 
frames per second and var iable  exposure t i m e s  down to  f i v e  nanoseconds. 
This system a lso  i s  capable of studying the t a rge t  react ion a f t e r  the 
impact. 
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The t a rge t  tank presently be i  
t o  26 inches deep which will f i t  
Windows on the tank provide fo r  ph 
p ro jec t i l e  l i n e  of f l i g h t .  I f  necessary, it 
and monitor the ta rge t  with strai 
meters. The vacuum i n  the targe 

This f a c i l i t y  i s  technically capable of performing two shots per 
e ight  hour day. This i s  the minimum time needed to  perform the 
following sequence of steps:  prepare and i n s t a l l  the proje  
get ,  X-ray cassettes, and sabot s t r ipper  attachment o r  acce 
prepare the propellant charge; evacuate the range, gas load the pump 
tube, and f i r e  the l i g h t  gas gun; c lean the pump tube, bar re l  and range 
tank; and develop the X-ray p la tes .  

V I I .  CONCLUSIONS 

1. The basic l i g h t  gas gun now i n  routine operation can propel a 
0 . 5  inch diameter, 2 gram, Lexan p ro jec t i l e  t o  more than 7.65 km/sec 
(25,000 f t / s ec ) .  

2 .  The reduced area accelerator i s  cap,able of launching a small 
cyl indr ica l  p ro j ec t i l e  a t  ve loc i t ies  up to  9.85 km/sec (29,000 f t / sec) .  
Research i s  continuing an t h i s  cencept to provide p ra j eq t i l e s  more 
su i tab le  to a, simulation test program. 

3. A new prg jec t i l e  release mechani'sm y i t h  improved performance 
has been developed f o r  use  i n  the reduced area aecexerator. 

4. 
useable size for a sirnulatian test program. 
cont inuiw,  

5 .  

The tapered entrance accelerator can launch p ro jec t i l e s  of 
Research QII t h i s  cancept is 

The sabot s t r ippe r  and gas separator has b'een found t o  be 
capable of launching s m a l l  spherical  p ro jec t i les  but with an uncontrolled 
veloci ty  and a low probabi l i ty  of a successful t a rge t  i m p a c t .  

6 .  The f r e e  f l i g h t  separator f o r  the sabot s t r ippe r  has removed the 
veloci ty  f luctuat ion and s igni f icant ly  improved the probabi l i ty  of a 
successful t a rge t  impact. Additionally, the velocity,  
technique, i s  higher than t h a t  of the gas separator. rrsing this 

7 .  The minimum size p ro jec t i l e  recommended f o r  use with the sabot 
s t r ipper  is 3/32 inch i n  d i  
has been found but material 
aluminum require special  care. 

ter. No p ro jec t i l e  density l imi ta t ion  
f high d u c t i l i t y  such as 1100 series 
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cent  or  bet  

10. The photographic system i s  capable of yielding s ix  p i  
the impact process a t  a var iable  ra 
second. 

up t o  100,000,000 frames pe 

11. The t a rge t  tank being in s t a l l ed  i s  28 x 36 x 48 inches i n  
s i z e  and w i l l  be evacuated down t o  to r r .  The tank w i l l  accept any 
t a rge t  which w i l l  f i t  through a 27 x 27 inch door and i s  less than 26 
inches long, 

12. The Materials Division Meteoroid Simulation Fac i l i t y  is  
technically capable of performing two hypervelocity f i r i n g s  per e ight  
hour day. 
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TABLE I 

SUMMARY OF DIFFERENT TYPES OF 

Hypervelocity 
Launchers 

Light Gas Guns 

Explosive Driver 

Exploding Foi 1 

Shaped Charge Jets 

Elec t ros ta t ic  
Acceler'ator 

Drag Accelerator 

Maximum 
km/sec 

9.15 

12.2 

9.15 

15.2 

15.2 

15.2 

Velocity 
f t/sec 

30,000 

40,000 

30 , 000 

50,000 

50,000 

50,000 

P ro jec t i l e  
Description 

Single d iscre te  pro- 
jecti le,  1/16 inch 
diameter and up 

Single d iscre te  pro- 
ject i le ,  1/16 inch 
diameter and up 

Plas t i c ,  large diameter 
t o  thickness r a t i o  

Random mass, s m a l l  
diameter t o  thickness 
r a t i o  

Multiple, microgram 
p ro jec t i l e  

Multiple, microgram 
p ro jec t i l e  
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30 FIGURE 5. POLYETHYLENE PISTON BEFORE 
AND AFTER FIRING 
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FIGURE 18. X,-RAY IMAGES OF TWO TYPES OF ~ 

SABOT AND PROJECTILE CONFIGURATIONS 
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46 FIGURE 21. TARGET USED IN SHOT 11 SHOWING 
' . ' CIRCULAR SYMMETRY PRODUCED 
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